+7 (343) 2873640

О защите глаз от вредного влияния ультрафиолета

В данной статье мы подробнее расскажем о вредном влиянии ультрафиолетового излучения на орган зрения и способах защиты глаз, с целью предупреждения глазных заболеваний и эффективной профилактической защиты от вероятных неприятностей.

Длина волны солнечного излучения лежит в области от 1 до 2500 нанометров (нм).

Человеческий глаз воспринимает лишь часть света, лежащего в пределах между 400 и 700 нм. Вне этих границ излучение может быть опасно для человека. Это ультрафиолетовое излучение (меньше 400 нм) и инфракрасное (больше 700 нм).        

Что такое ультрафиолет?

Ультрафиолетовое излучение – это невидимое глазом электромагнитное излучение, занимающее область между видимым и рентгеновским излучениями в пределах длин волн 100-380 нанометров.

Ультрафиолетовое излучение нельзя увидеть, услышать или почувствовать, но можно вполне реально ощутить его воздействие на тело, в том числе и на глаза.

Основным источником ультрафиолетового излучения является Солнце.

Вся область ультрафиолетового излучения (или UV) условно делится на ближнюю (λ=200-380 нм) и дальнюю, или вакуумную (λ=100-200 нм).

Ближний диапазон UV – лучей, в свою очередь, подразделяется на три составляющие:

         – UVC(коротковолновое УФ – излучение);

         — UVB (средневолновое УФ – излучение);

         — UVA (длинноволновое УФ — излучение);

Все эти УФ — излучения различаются по своему влиянию на организм человека.

При воздействии на живые организмы ультрафиолетовое излучение поглощается верхними слоями тканей растений или кожи человека и животных. В основе его действия лежат химические изменения молекул биополимеров, вызванные как непосредственно поглощением ими квантов излучения, так и в меньшей степени — взаимодействием с образующимися при облучении радикалами воды и других низкомолекулярных соединений.

UVC является наиболее коротковолновым и высокоэнергичным ультрафиолетовым излучением с диапазоном длин волн от 200 до 280 нм.

Регулярное воздействие этого излучения на живые ткани может быть достаточно разрушительным, но, к счастью, оно поглощается озоновым слоем атмосферы.

Следует учитывать, что именно это излучение генерируется бактерицидными ультрафиолетовыми источниками излучения и воздействует при сварке.

UVB охватывает диапазон длин волн от 280 до 315 нм и является излучением средней энергии, представляющим опасность для органов зрения человека.

Именно UVB – могут вызвать солнечный удар, повредить глазные ткани, что повлечет за собой необратимые последствия, а в экстремальных случаях – вызывают заболевания кожи.

UVB–излучение практически полностью поглощается роговицей, хрусталиком, стекловидным телом, и не достигает сетчатки, однако часть его, в диапазоне 300-315 нм, может проникать во внутренние структуры глаза.              

UVА (косметическое) – это наиболее длинноволновая и наименее энергетичная составляющая УФ — излучения с длиной волн от 315 – 380 нм. Все знают, что загар кожи происходит вследствие поглощения в ней УФА – излучения.

Роговица поглощает некоторое количество UVА излучения, однако большая часть поглощается хрусталиком. Эту составляющую и должны, прежде всего, учитывать офтальмологи, оптометристы, продавцы оптики потому, что именно она проникает глубже других в глаз и обладает потенциальной опасностью.

Глаза испытывают воздействие всего достаточно широкого УФ – диапазона излучения. С увеличением длин волн ультрафиолета возрастает глубина его проникновения внутрь глаза, причем большую часть этого излучения поглощает хрусталик.

Хрусталик глаза человека является великолепным фильтром, созданным природой для защиты внутренних структур глаза. Он поглощает УФ – излучение в диапазоне от 300 до 400 нм, оберегая сетчатку от воздействия потенциально опасных длин волн.

Тем не менее, при долговременном регулярном воздействии ультрафиолета развиваются повреждения самого хрусталика, с годами он становится желто-коричневым, мутным и в целом – непригодным к функционированию по назначению (то есть образуется катаракта). В этом случае назначается операция по удалению катаракты.                

Поскольку УФ — излучение почти полностью поглощается роговицей, хрусталиком, стекловидным телом глаза и только его очень малая часть достигает сетчатки глаза, то чаще всего проявляется УФ – ожог роговицы, так как ей в первую очередь достаются наибольшие порции УФ излучения. Такой ожог проявляется гораздо болезненней, чем обычный солнечный ожог кожи. Чаще всего такой ожог проявляется после длительного пребывания с незащищенными глазами на ярком солнце, в особенности в горах и на снегу, но можно такой ожог получить и при длительном пребывании возле воды или на песчаном пляже, и дома, читая во время процедур загара под специальной лампой для загара, лучи которой отражаются от бумаги и попадают в глаза.  

Основная опасность и отличительная особенность ультрафиолетового излучения в том, что результаты воздействия УФ — излучения накапливаются (аккумулируются) в тканях организма человека. Поэтому, несмотря на то, что интенсивность воздействия УФ — излучения на хрусталик существенно меньше, чем на роговицу, с воздействием именно УФ — излучения связывают появление катаракты, а на сетчатке глаза – дегенерация желтого пятна сетчатки вследствие УФ — ожога. К сожалению, появившиеся таким образом катаракта и нарушение сетчатки часто необратимы.

Вторая опасность накапливающейся реакции глаз на УФ — излучение проявляется не в виде заболевания, а в виде ускорения прогрессивного постарения кожи, и исходно здорового зрительного аппарата – снижение скорости и глубины световой адаптации, понижения цветоразличения, снижения остроты зрения при пониженном освещении.

Ультрафиолетовые лучи угрожают нашему здоровью не только летом, они присутствуют всегда и везде круглый год.

УФ – облучение глаз осуществляется не только прямым излучением солнца, но и отражением от поверхности земли излучением. Разумеется, в теплое время года их интенсивность выше, однако осенью и зимой также существует опасность вредного воздействия этого излучения. Количество отражаемого УФ – излучения в среднем изменяется от 1% (для зеленого газона) до 80% (для снега). Песок при этом отражает до 10% УФ – излучения, а вода до 20%. От снежных и ледяных поверхностей солнечный свет отражается сильнее и создает более высокий уровень рассеянного ультрафиолетового излучения. Вследствие этого наносимый ультрафиолетовым излучением вред возрастает и может вызвать в негативные изменения в нашем зрительном аппарате или же ускорить проявление этих изменений. Таким образом, заметно усиливается УФ – воздействие на глаза особенно при пребывании на снегу зимой или возле воды или песка летом.

Особенно подвержены опасности глаза детей и молодежи, так как они еще не сформировались. Повышенная доза облучения может привести к частичной потере зрения, что зачастую не поддается лечению, и поэтому этот ущерб может быть невосполним.

Важно также помнить, что особо нуждаются в защите от УФ – облучения люди, проходящие лечение, либо профилактику с помощью лечебных препаратов и лекарств следующее перечня:

—   транквилизаторов;

—   антибиотиков;

—   антигистаминных препаратов;

—   таблетированных контрацептивов.

В этом случае наблюдается так называемый фотосенсибилизирующий побочный эффект – повышенная чувствительность биологических тканей человека воздействию УФ – излучения. Кроме того, клиенты с афакией глаза лишены той возможности УФ – защиты, которую осуществляет в здоровом глазу тело хрусталика. У них значительная доля УФ – излучения может достичь сетчатки глаза, а значит наличие УФ – защиты, осуществляемое с помощью очковых линз, становится жизненно необходимым.

Ежедневная защита глаз должна стать первоочередной задачей каждого, независимо от времени года.

Даже те, кто находится в тени, подвержены облучению (хотя и в «половинном» размере) – из-за отраженного ультрафиолетового излучения, в первую очередь от воды и снега. Полная защита достижима только тогда, когда вы носите солнцезащитные очки, которые на самом деле могут задерживать ультрафиолетовое излучение в UVА и UVB – диапазонах. Очки с высококачественными линзами должны предоставлять 100% защиту от ультрафиолетового излучения, максимально снижать слепящий эффект и улучшать восприятие контрастности. Особенно всеми этими свойствами должны обладать детские очки. Некачественные очковые линзы, не обладающие достаточной ультрафиолетовой защитой, могут не ослабить, а усилить действие УФ-излучение на глаза.

Глаз человека устроен так, что в зависимости от интенсивности светового излучения происходит расширение или сужение зрачка, по принципу работы диафрагмы фотоаппарата. Этим достигается естественная защита органа зрения от вредного воздействия УФ – излучения.

Если человек в очках с некачественными очковыми солнцезащитными линзами выходит под яркое освещение на открытом воздухе, то происходит искусственное расширение зрачка глаза, при этом поглощения ультрафиолетового излучения не происходит и весь поток устремляется на сетчатку глаза.

Причина этого коренится в том, что механизм адаптации глаз человека работает именно по уровню освещенности в видимом диапазоне.

Без линзы механизм адаптации уменьшил бы зрачок, сократив соответственно и засветку сетчатки УФ – излучением, а с линзой из некачественного материала зрачок сокращается меньше и через его большую апертуру в глаза попадает больше УФ – излучения. Поэтому применение очковых линз с некачественной УФ – защитой повышает опасности для глаз по сравнению со случаем, когда человек вообще не применял никаких солнцезащитных очков.

Доступная и полная информация о вредном влиянии ультрафиолетового излучения на орган зрения – глаза, необходима для населения не для запугивания, а для предупреждения возможности потери здоровья, а также для профессионально — грамотных, убедительных формулировок, получаемых в оптических предприятиях, где гарантированно можно получить услуги в качественной коррекции зрения, а также приобретении качественных солнцезащитных очков с 100% ультрафиолетовой защитой.

Главная задача работников оптических предприятий – добросовестно информировать население о возможных путях профилактики поддержания его здоровья, привлекательности внешнего вида и защиты от возможных проблем.

Уровень УФ – защиты, обеспечиваемый конкретной линзой, в основном обеспечивается материалом линзы и оптическими покрытиями нанесенными на нее.

Эти оптические изделия должны соответствовать требованиям международных стандартов в части УФ – защиты. А чем выше уровень УФ – защиты, тем надежнее профилактическая защита (при помощи очковых линз) зрительного аппарата от появления опасных заболеваний и преждевременного старения.

Самый «мягкий» уровень УФ – защиты обеспечивают обыкновенные, известные и популярные бесцветные очковые линзы из минерального стекла. Универсальные фотохромные стекла обеспечивают уровень защиты в 3-20 раз выше, чем бесцветные стекла. Самый высокий уровень УФ — защиты свойственен солнцезащитным и особенно поляризационным очковым линзами.

Степень защиты от ультрафиолетового излучения достигается введением специальных добавок в состав шихты для производства минеральных линз, добавлением УФ – абсорберов в реакционную смесь при полимеризации или литье органических линз, а также внедрением УФ – абсорберов в поверхность или нанесением покрытий.

Минеральные очковые линзы из обычного кронового стекла непригодны для надежной защиты от УФ — излучения, если в состав шихты для производства стекла не введены специальные добавки.

Спектральные кривые светопропускания различных оптических материалов доказывают, что насколько лучше с точки зрения защиты от ультрафиолета традиционные пластмассы по сравнению с минеральным стеклом.

Большинство минеральных очковых линз из кронового стекла в зависимости от толщины по центру начинают пропускать ультрафиолет с длин волн 280-295 нм, достигая 80-90% светопропускания на длине волны 340 нм. На границе УФ – диапазона (380 нм) светопоглощение минеральных очковых линз составляет всего 9%.

Очковые линзы из полимерных материалов, в состав реакционной смеси которой добавляют специальный УФ – абсорбер, линза пропускает излучение с длиной волны от 400 нм и является прекрасным средством защиты от ультрафиолета.

Эффективность защиты солнцезащитных линз в УФ – диапазоне не определить визуально, ее можно проверить только с помощью специальных приборов и приспособлений.

Добавить комментарий